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WHAT IS THIS TALK ABOUT

* Exposing the internals of how an Al engine
conceptually works, no technical jargon.

- What we see through our projects in Al.
* Not an exhaustive list of all Al algorithms used.

» Al algorithms tend to be pretty sophisticated. So
rather than wading into the mechanics of how they
work, were going to focus on what the algorithms
do conceptually.
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TALK OVERVIEW

+ Al DEFINITION.

* MACHINE LEARNING DISCUSSION.
* NEURAL NETWORKS DISCUSSION.
» Al'IN THE NEWS, THE FUTURE.
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ARTIFICIAL INTELLIGENCE

« Al is a broad term for computer algorithms that
helps us make decisions or predictions about data.

- Pattern recognifion( sometimes hidden ) in the
dafa.

« Examples : detecting spam emails, brain fumors (CT
scans), Floor cleaning robof.

 Useful, but not “intelligent”.
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MACHINE LEARNING

* Martfian geology.

- Deciding whether Martian rocks are volcanic
(above surface) or plutonic ( below surface).

« Classification.
» Classifier algorithm.

+ Algorithms reducing complexity of real world
objects and phenomena into features.

www.ahmadeus.com



MACHINE LEARNING

» Features : Values that usefully characterize things
we want to identify and classify.

» Features ( granularity, density).
+ Geology tfeam on mars, training (labeled )data.
- Unlabeled data.
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SCATTER PLOT
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SCATTER PLOT

Decision Boundary

@ Plutonic
W Volcanic

25

12

08

06

0.4

0.2

0

> °
o @ o QﬂQQQ
o0 | o |o & 2
@ ° %
o e o > > ® o
HJ.‘ o o
°9 o o 0 000 ®
m ® o9 o EY 2
D e o * ® 9 L
® 20 3
- m» » ® i [k ]
i 5 it ¢ S ¢ ] ]
m = e ho v} o |2
® >
N B @D m ;e
mE mm
o o = i ]
m m -
B BE @08 lm
»
c
” 3
g

11

www.ahmadeus.com



MACHINE LEARNING

* Machine learning algorithms : Max classification
with min errors.

« 170 rocks correct, 30 rocks wrong, average
classification accuracy 85%.

« Robots on Mars, unlabeled data.

« Accuracy Varies depending on industry and the
project.

« Al is extremely context specific, no one size fits all.
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DECISION TREE

Granularity <= 12.5 then
Density <= 6.9 then
Output ( )

Output ( )
end

Output (

' end
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MACHINE LEARNING

» Decision tree ( If else ) .

+ Divide the decision space using arbitrary lines, non
linear.

* Multiple decision trees = Forests.
* Hundreds of ML Algorithms.
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MACHINE LEARNING

» Non tree approaches, dividing decision space using
curvy fancy mathematical notations ( polynomials,
other math).

* ML Algorithm job to figure out the best lines to
provide most accurate decision boundaries.
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MACHINE LEARNING

3 features.

> Viscosity.

» 2D Lines -> 3D Planes.

 Useful classifier, handling multiple rock types.

» Equation for a Hyperplane rippling through
thousand dimensional decision space??

» Real world classifiers, 100s — 1000s features ( google,
amazon, facebook)
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STATISTICS

» Decision trees, ML strongly rooted in statistics.

» Used before computers.

* Making confident decisions , using data.

- Other approaches to Al with no origin in statistics

» Most popular : Artificial Neural Networks ( ANN's).
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NEURAL NETWORKS

Based on neurons in our brains.

Biological neurons : Cells that transmit messages
using chemical and electrical signals.

Multi input from other cells, process signals, emit
own signal.

Huge interconnected networks in brain to process
complex information.

* Artificial neurons : Similar approach.
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NEURAL NETWORKS

 Artificial neurons : instead of chemical / electrical
signals, fake numbers in, spit numlbers out.

« Organized into layers, forming network of neurons.
« Martian Rocks and Classification.
» Found rock ( Unlabeled Data ).
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NEURAL NETWORKS

HIDDEN LAYER

INPUT LAYER OUTPUT LAYER

GRANULARITY H / \
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NEURAL NETWORKS

« Each neuron would have arbitrary values set.

« An algorithm tweaks the values.

» Each layer of neurons produces new values
propagating forward to next layer.

- Labeled data, gradual improvements.
* Training and testing.

* Mimicking human learning.

- Deep learning, multiple hidden layers.
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NEURAL NETWORKS

 Training complex neural networks requires intensive
computation and data.

* Neural networks : 50 years old !
« Deep learning recently practical.
 Cheap computers, cloud, etc.
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NEURAL NETWORKS

- Google and Facebook ( Facial detection in
pictures)2015.

* Deep neural networks ( autonomous cars, medical
diagnosis, translating human speech).

- Sophisticated algorithmes.
* Intelligent?

- Weak Al, Narrow Al : single task intelligent |
ldentifying rocks, driving cars ).

- Doesn't mean it's not useful

www.ahmadeus.com
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ARTIFICIAL INTELLIGENCE

Composing musice Cooking recipes?

Not needed, is cool.

Strong Al : General purpose, human like Al.

No demo yet, maybe never.

Explosion of digitized content ( Wikipedia, twitter).
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ARTIFICIAL INTELLIGENCE

* IBM WATSON.
» 200 Million pages of content ( full text of wikipedia).
* Not a Strong Al

Al Platforms from large tech companies can absorb
large amounts of data.

 Faster learning than humans in narrow tasks.
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ARTIFICIAL INTELLIGENCE

Google Alphago.
Narrow Al playing GO.
Played against millions of its clones.

Learning new strategies, discovering completely
new one.

REINFORCEMENT LEARNING.
Close to how humans learn ( babies walking).
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ARTIFICIAL INTELLIGENCE

The future?

Learning by trial and error.

Reinforcement learning works for Narrow Al.
Potential for Strong Al using reinforcement learning?
Strong Al learning like Kids do?
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AI PROJECTS

- WATERFALL AND AGILE.
 [TERATIVE WATERFALL.

- GATHERING LABEL DATA, BUILDING CLASSIFIER
ALGORITHM.

* INVOLVING CLIENT.
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